# **ENERGY AUDIT - 2019**



# **SREEPATHY INSTITUTE OF**

# **MANAGEMENT & TECHNOLOGY**

VAVVANOOR, PATTAMBI PALAKKAD

EXECUTED BY



# **ATHUL ENERGY CONSULTANTS PVT LTD**

4th FLOOR, CAPITAL LEGEND BUILDING, KORAPPATH LANE, ROUND NORTH, THRISSUR, KERALA-680020 Ph: +91 735611199/0-6 Web: www.athulenergy.com E-Mail: info@athulenergy.com

January- 2020

#### BRIEF CONTENTS

| ACKNOWLEDGEMENTS                 | 6  |
|----------------------------------|----|
| EXECUTIVE SUMMARY                | 7  |
| GENERAL DETAILS                  | 12 |
| DESCRIPTION OF SITE              | 13 |
| LAYOUT                           | 14 |
| OBJECTIVE – ENERGY AUDIT         | 15 |
| ELECTRICITY CONSUMPTION ANALYSIS | 16 |
| ELECTRICITY PERFORMANCE          | 23 |
| HARMONIC STUDY                   | 29 |
| ANNEXURE-1                       | 44 |
| ANNEXURE-2                       | 47 |

#### TABLE OF CONTENTS

| ACKNOWLEDGEMENTS                                 | 6  |
|--------------------------------------------------|----|
| EXECUTIVE SUMMARY                                | 7  |
| 1. Energy audit                                  | 7  |
| GENERAL DETAILS                                  | 12 |
| DESCRIPTION OF SITE                              | 13 |
| LAYOUT                                           | 14 |
| OBJECTIVE – ENERGY AUDIT                         | 15 |
| ELECTRICITY CONSUMPTION ANALYSIS                 | 16 |
| 1. BASELINE DATA & CONSUMPTION: 12 MONTHS        | 16 |
| 2. DEMAND ANALYSIS                               | 17 |
| 3. ELECTRICITY DEMAND IN VARIOUS TIME ZONES      | 18 |
| 4. POWER FACTOR ANALYSIS                         | 19 |
| 5. TARIFF RATES ANALYSIS                         | 20 |
| 6. SPECIFIC ELECTRICITY CONSUMPTION              | 21 |
| ELECTRICITY PERFORMANCE                          | 23 |
| A. single line diagram                           | 23 |
| B. transformer secondary                         | 24 |
| 1. ANALYSIS: VOLTAGE VARIATION                   | 25 |
| 2. LOAD FACTOR                                   | 26 |
| 3. Analysis: Power Factor variations             | 27 |
| 4. Analysis: Unbalance                           | 28 |
| HARMONIC STUDY                                   | 29 |
| C. CAPACITOR panel                               | 32 |
| 1. HT yard transformer                           | 32 |
| E. diesel generators                             | 33 |
| F. HEATING VENTILATION & AIR CONDITIONING (HVAC) | 35 |
| 1. Air conditioning                              | 35 |
| H. light, fan & computer loads                   | 37 |
| Renewable energy                                 | 43 |
| ANNEXURE-1                                       | 44 |
| Energy saving proposal - 1                       | 44 |

| Energy saving proposal - 2 |                            |    |
|----------------------------|----------------------------|----|
| En                         | Energy saving proposal – 3 |    |
| ANNE                       | EXURE-2                    | 47 |
| 1.                         | LED specification          | 47 |
| 2.                         | BLDC specification         | 48 |
| 3.                         | ABBREVIATIONS              | 49 |
| 4.                         | INSTRUMENTS USED           | 50 |
| 5.                         | REFERENCES                 | 50 |

#### LIST OF TABLES

| TABLE 1: ENERGY SAVING PROPOSALS                               | 7 |
|----------------------------------------------------------------|---|
| TABLE 2: ENERGY INDEX                                          | 7 |
| TABLE 3: ANNUAL ENERGY CONSUMPTION                             | 8 |
| TABLE 4: GENERAL DETAILS 1                                     | 2 |
| TABLE 5 : BASELINE DATA 1                                      | 6 |
| TABLE 6: SPECIFIC ELECTRICITY CONSUMPTION – KWH/M <sup>2</sup> | 1 |
| TABLE 7: MAIN INCOMER                                          | 4 |
| TABLE 8: LOAD FACTOR – TRANSFORMER                             | 6 |
| TABLE 9: PF ANALYSIS                                           | 7 |
| TABLE 10: HARMONICS CLASSIFICATION 2                           | 9 |
| TABLE 11: EFFECTS OF HARMONICS (IEEE 519) 2                    | 9 |
| TABLE 12: CURRENT HARMONICS LIMIT (IEEE 519-2014)              | 0 |
| TABLE 13: VOLTAGE HARMONICS LIMIT (IEEE 519-2014               | 0 |
| TABLE 14: HARMONICS ANALYSIS                                   | 0 |
| TABLE 15: CAPACITOR DETAILS                                    | 2 |
| TABLE 16: DG DETAILS                                           | 3 |
| TABLE 17: HISTORIC SEGR OF DG                                  | 3 |
| TABLE 18: SPLIT AC LOAD SUMMARY                                | 5 |
| TABLE 19: LIGHT LOADS                                          | 9 |
| TABLE 20: FAN LOADS                                            | 1 |
| TABLE 21: COMPUTER LOADS 4                                     | 2 |
| TABLE 22: LED SPECIFICATION                                    | 7 |
| TABLE 23: BLDC SPECIFICATION                                   | 8 |
| TABLE 24: INSTRUMENTS USED                                     | 0 |

# LIST OF FIGURES

| FIGURE 1: ANNUAL ENERGY CONSUMPTION                              | 8  |
|------------------------------------------------------------------|----|
| FIGURE 2: GOOGLE LAYOUT                                          | 14 |
| FIGURE 3: DEMAND ANALYSIS                                        | 17 |
| FIGURE 4: DEMAND IN VARIOUS TIME ZONES                           |    |
| FIGURE 5: POWER FACTOR ANALYSIS                                  |    |
| FIGURE 6: TARIFF RATE                                            | 20 |
| FIGURE 7: SPECIFIC ELECTRICITY CONSUMPTION (kWh/m <sup>2</sup> ) |    |
| FIGURE 8: SINGLE LINE DIAGRAM                                    | 23 |
| FIGURE 9: TRANSFORMER                                            | 24 |
| FIGURE 10: VOLTAGE PROFILE                                       | 25 |
| FIGURE 11: KW & PF VS TIME                                       | 27 |
| FIGURE 12: CURRENT PROFILE                                       |    |
| FIGURE 13: HARMONICS ANALYSIS                                    |    |
| FIGURE 14: DIESEL GENERATOR                                      |    |

# **ACKNOWLEDGEMENTS**

We express our sincere gratitude to the management of Sreepathy Institute of Management and Technology (SIMAT) for giving us an opportunity to carry out the project of Energy Audit. We are extremely thankful to the SIMAT for their support to carry out the studies and for input data, and measurements related to the project of Energy audit.

#### SIMAT

| 1 | Dr. George C T | Principal       |
|---|----------------|-----------------|
| 2 | Mr.Renjith PC  | Asst. Professor |
| 3 | Mr. Suhas .M   | Lab Instructor  |

Also congratulating our Energy audit team members for successfully completing the assignment in time and making their best efforts to add value.

**Energy Audit Team** 

#### 1. Mr. Santhosh A

Registered Energy Auditor of Bureau of Energy Efficiency (BEE – Govt. of India) Accredited Energy Auditor No – EA 7597

#### 2. Mr. Ashok KMP

Registered Energy Manager of Bureau of Energy Efficiency (BEE – Govt. of India) Energy Manager No – EA 25612, Griha Professional

- 3. Ms. Jijiraj K R, Project Engineer, B-Tech Electronics and communication.
- 4. Mr. Harikrishnan K, Project Engineer, B-Tech Production Engineering.



Yours faithfully

Managing Director Athul Energy Consultants Pvt Ltd

# **EXECUTIVE SUMMARY**

# 1. ENERGY AUDIT

# A. ENERGY SAVING PROPOSALS

#### The following table shows the energy saving proposals

| Sl.<br>no | Energy conservation measures     | Annual<br>Energy<br>Savings                 | Annual<br>Financial<br>Savings | Investment         | Simple<br>payback<br>period |
|-----------|----------------------------------|---------------------------------------------|--------------------------------|--------------------|-----------------------------|
|           |                                  | kWh                                         | Rs                             | Rs                 | Months                      |
| 1         | Power factor Improvement in      |                                             | 16,517.00                      | 6,000.00           | 05                          |
|           | Electrical System                |                                             |                                |                    |                             |
| 2         | Replacement of Ceiling Fans with | 3472                                        | 22,280.80                      | 1,17,800.00        | 31                          |
|           | BLDC fans                        |                                             |                                |                    |                             |
| 3         | Replacement of Fluorescent       | On                                          | the damages ir                 | n the existing lig | ght fittings                |
|           | Tubes With LED                   |                                             |                                |                    |                             |
| 4         | Replacement of old split AC with | On the damages/recurring maintenance in the |                                |                    |                             |
|           | new 5-star AC                    | existing AC's                               |                                |                    |                             |
|           | Total                            | 3,472                                       | 38,797.80                      | 1,23,800.00        |                             |

 TABLE 1: ENERGY SAVING PROPOSALS

# B. ENERGY PERFORMANCE INDEX (EPI)

EPI was based on the energy consumption in Jan 2019 to Dec 2019. The futuristic energy consumption after the implementation of energy saving proposals is given in the tables below.

| Parameters                                                               | Values      |  |
|--------------------------------------------------------------------------|-------------|--|
| Present Annual electricity consumption(kWh/year)                         | 51594       |  |
| Present annual electricity cost (Rs)                                     | 7,44,229.96 |  |
| Present annual specific electricity consumption (kWh/m <sup>2</sup> )    | 3.58        |  |
| After Energy Saving Implementation                                       |             |  |
| Expecting annual electricity consumption (kWh/year)                      | 48,122.00   |  |
| Expecting annual specific electricity consumption (kWh/ m <sup>2</sup> ) | 3.34        |  |
| Electricity savings %                                                    | 6.73        |  |
| % of cost savings                                                        | 5.21        |  |
| TABLE 2: ENERGY INDEX                                                    |             |  |

# C. PRESENT ANNUAL ENERGY CONSUMPTION

The present annual energy consumption has been analysed in below table with the available data from the SIMAT for the period Jan -2019 to Dec 2019.

| Particulars | Unit   | Quantity | Gross calorific | Million kCal | Percentage of    |
|-------------|--------|----------|-----------------|--------------|------------------|
|             |        |          | value (kCal)    | (Toe)        | distribution (%) |
| Electricity | kWh    | 51594    | 860             | 4.44         | 67.37            |
| Diesel      | Litres | 2262     | 9500            | 2.15         | 32.63            |
| Total       |        |          |                 | 6.59         | 100              |

TABLE 3: ANNUAL ENERGY CONSUMPTION



FIGURE 1: ANNUAL ENERGY CONSUMPTION

# D. ENERGY AUDIT REPORT SUMMARY

The summary of the report with respect to each section is as follows.

- 1. Electricity consumption analysis:
- Demand analysis: The demand analysis gives an output that recorded maximum demand in the last 12 months is 63.7 kVA. The recorded demand ranged from 25.98 to 63.68 % of the contract demand which incurred unwanted payment of Rs 0.45 lakhs annually. By optimizing the Contract demand the demand charges can reduce, however the expense for reducing it is higher, as the college needs to change CT and PT.
- Power factor analysis: The average power factor registered in last 12 months was 0.91. Any decrease in the PF below unity reduces the amount that receives as incentives for the college. At present college receives penalty to an amount of Rs 6000 per annum for not maintaining the PF above 0.95. For improvement, an investment of Rs 6000/-, for the installation of new capacitors at the Automatic power factor controllers at the secondary side of the transformer. This will give the payback within short duration of 5 months.
- Power factor analysis: The annual specific electricity consumption with respect to the building area is 3.577 kWh/m<sup>2</sup>.

#### 2. Electricity performance

- Voltage & Current imbalance: The voltage imbalance depends on the supply voltage and the loads in the college. Considering both, the present voltage imbalance is well within the limits with maximum value of 1.2%. The current imbalance ranges in 0.7 to 200% maximum which is very high comparing to normal standards which is 10%, at the 415V side. The registered maximum imbalance was 200, due to the non-registering of current in one phase, with an average value of 42%
- Load factor: The present average load factor in 24 hours period is 25.5%, at the secondary side of transformer which is very low considering the variability in operation of loads.

- Transformer loading: the transformer was loaded to 10.7% which is very low. Thus the efficiency of transformer will also be very low as the best efficiency loading point is 50 to 60%.
- Capacitors: From the analyzation of active and reactive power with Power factor, the present installation method of capacitors at the transformer end, is satisfactory. However further improvement from the present 0.91 to unity is possible by replacing the damaged capacitors in the panel will avoid the penalty and incur incentives. The damaged capacitors (C1, C2 and C5) needs replacement with new one in the panel which will improve the PF in the system.
- Light loads: Majority of the indoor lighting fixtures are fluorescent type (T12) that shares about 95% of the total indoor lighting load. By replacing these loads with LED light fittings will reduce the overall power consumption in SIMAT. The LED specification that needs to follow while purchase is mentioned in the Annexure-2. The suggestions for the light fitting are given in the Annexure-1.
- Ceiling fan loads: Ceiling fans are installed in majority of the areas in SIMAT which accounts 90% of the total fans section. By replacing it with Brushless DC fans which consumes in the range of 20 to 25W at full speed, instead of 60W in normal fans, will reduce the power consumption considerably. The BLDC specification that needs to follow while purchase is mentioned in the Annexure-2.
- Air conditioners: Almost all the AC are around 10 years old mainly placed in the computer labs and offices. Any further repairing on these AC is unwanted and will consume more power. Replace it with new 5-star AC's whenever there occur failures in it.
- Solar power plant: The initiative from SIMAT to install 30-kWp solar power plant, is worth notified. The present average annual power generation is around 0.43 lakh units considerably. As per the NASA Data Access Viewer Climatology with the present minimum insolation of SIMAT college area is 4 kWh/m<sup>2</sup>/day.

For the optimization of solar power plant, the following points are recommending.

- 1. The bird droppings and dust accumulation in the solar panel should be rectified by increasing the frequency of cleaning to one week which will reduce the financial loss.
- 2. Check the inverter strings manually if there any issues in the connections.

- 3. Ensure the efficiency of inverter, once in a month, whether it is more than 98%, as every drop in efficiency will reduce the power generation.
- Provision for Electric vehicle charging: SIMAT can set as model College for updating with the latest technologies by installing Electric charging stations for cars and bikes in their parking lot. A detailed DPR and consultation with KSEBL is required to find the feasibility of the same.

# **GENERAL DETAILS**

The general details of the SIMAT is given below in table based on the data availed from the college, in between the Jan 2019 to Dec 2019. The data based on the electricity bill, solar and diesel generated units, human resources and finance department of the college.

| SL. NO | PARTICULARS                            | DETAILS                             |
|--------|----------------------------------------|-------------------------------------|
| 1      | Name & Address                         | Sreepathy institute of Management & |
|        |                                        | technology                          |
|        |                                        | Vavvanoor, Koottanad                |
|        |                                        | Pattambi, Palakkad Dist – 679533    |
|        |                                        | Ph: 0466 2370200                    |
| 2      | Contact person                         | Dr. George CT, Principal            |
| 3      | No. of Employees                       | 110                                 |
| 4      | Building area (m <sup>2</sup> )        | 14420                               |
| 5      | Number of students (Nos)               | 640                                 |
| 7      | Annual Diesel Consumption (Litres)     | 32293.71                            |
|        | (Transport + DG)                       |                                     |
| 8      | Annual Diesel generated units (kWh)    | 6559                                |
|        | (DG)                                   |                                     |
| 9      | Annual Electricity Consumption (KSEBL) | 51594                               |
| 10     | Solar generated units (kWh)            | 35000                               |
| 11     | Contract Demand (kVA)                  | 100                                 |
| 12     | Maximum Demand (kVA)                   | 63.68                               |
| 13     | Average Power factor                   | 0.91                                |

TABLE 4: GENERAL DETAILS

# **DESCRIPTION OF SITE**

Sreepathy Institute of Management and Technology (SIMAT) is the offspring of the Sreepathy Trust which is formed with the collective participation of dedicated technocrats, engineers, industrialists, philanthropists and individuals having the common goal of establishing a platform to promote quality higher education and research avenues in professional disciplines like technical and engineering subjects, medical and paramedical, management studies, agriculture, biotechnology and cultural disciplines in order that the deserving cross section of the society irrespective of their cast, colour and creed are provided with an opportunity to groom.

The devoted teaching faculty of SIMAT with consistent academic records is headed by a qualified, talented and professional Director to excel in all sphere of the institution activities. The institution has put in place the state- of- the -art infrastructure and laboratory facilities to enrich the student's academic profiles. SIMAT Faculty members include PhD holders and academically proven Postgraduates who enjoy the working environment well besides availing the pay and benefits which are at par with AICTE guidelines. The college is approved by AICTE and affiliated to APJ Abdul Kalam Technological University and Calicut university.

The college provides the following engineering courses with state-of-the-art facilities.

- Civil engineering
- Electronics and communication engineering
- Mechanical engineering
- Computer science and engineering
- Electrical and electronics engineering



Energy audit report – SIMAT

# LAYOUT



FIGURE 2: GOOGLE LAYOUT

# **OBJECTIVE – ENERGY AUDIT**

An energy audit is a key to assessing the energy performance of facility and for developing an energy management program. The typical steps of an energy audit are:

- Preparation and planning
- •Data collection and review
- •Plant surveys and system measurements
- •Observation and review of operating practices
- •Data documentation and analysis
- •Reporting of the results and recommendations

#### **1.1.** Definition of energy auditing

In the Indian Energy Conservation Act of 2001 (BEE 2008), an energy audit is defined as: "The verification, monitoring and analysis of the use of energy and submission of technical report containing recommendations for improving energy efficiency with cost-benefit analysis and an action plan to reduce energy consumption."

#### **1.2.** Objectives of Energy Auditing

The objectives of an energy audit can vary from one plant to another. However, an energy audit is usually conducted to understand how energy issued within the plant and to find opportunities for improvement and energy saving. Sometimes, energy audits are conducted to evaluate the effectiveness of an energy efficiency project or program. **In SIMAT** as per the request, we have assessed the energy consumption and saving opportunities at present scenario.

#### Methodology for the study

The methodology adopted for energy audit starts from historical energy data analysis, power quality analysis, monitoring of operational practices, system evaluation, cost benefit analysis of the energy conservation opportunities, and prepare plan for implementation. The proposals given in the report includes economical energy efficiency measures to reduce facilities unnecessary energy consumption and cost. The energy conservation options, recommendations and cost benefit ratio, indicating payback period are included in this report.

#### Scope of Work

The Scope of Work includes:

- 1. Historical energy data analysis.
- 2. Electrical, Mechanical and Thermal energy analysis.
- 3. Power Quality Analysis.
- 4. Identification of Energy saving opportunities.
- 5. Cost Benefit Analysis.

# **ELECTRICITY CONSUMPTION ANALYSIS**

# 1. BASELINE DATA & CONSUMPTION: 12 MONTHS

|    | Base Line Data (Based on last 12 months – Ja  | an 19 to Dec 19)     |
|----|-----------------------------------------------|----------------------|
| 1  | Electricity provider                          | KSEBL                |
| 2  | Supply Voltage                                | 11 kV                |
| 3  | Tariff                                        | HT IV (A) COMMERCIAL |
| 4  | Consumer number                               | 136539000494         |
| 5  | Contract demand (kVA)                         | 100                  |
| 6  | Maximum demand registered (kVA)               | 64                   |
| 7  | Average monthly electricity consumption (kWh) | 93,154               |
|    | (KSEB + DG + Solar)                           |                      |
| 8  | Average demand charges (Rs/month)             | 33000                |
| 9  | Average excess demand charges (Rs/month)      | Nil                  |
| 10 | Average power factor                          | 0.91                 |
| 11 | Average power factor incentive (Rs/month)     | 939.00               |
|    | Average power factor penalty (Rs/month)       | 543.00               |
| 12 | Demand charge (Rs / kVA)                      | 440                  |
| 13 | Excess demand charge (Rs/kVA)                 | 220                  |
| 14 | Average Electricity charges – KSEBL (Rs/kWh)  | 6.5                  |
| 15 | Average monthly electricity cost (DG + KSEBL) | 75,214               |
|    | (Rs)                                          |                      |

TABLE 5 : BASELINE DATA

Inference

i. The average power factor was 0.91 during the last 12 months

ii. In the total electricity charges the demand shares the most which is mainly due to the low maximum demand.

# 2. DEMAND ANALYSIS

This section analyses the trend for the maximum demand versus the Contract Demand (CD) over a 12-month period (Jan -2019 to Dec 2019).



#### FIGURE 3: DEMAND ANALYSIS

Inference

i. Average demand charges came as Rs. 30,000 per month.

 The recorded demand ranged from 25.98 to 63.68 % of the contract demand which incurred 75% as the base charges during the 12-month period that amounts to Rs 3.77 lakhs.

# Athul Energy Consultants Pvt Ltd

# 3. ELECTRICITY DEMAND IN VARIOUS TIME ZONES



#### The variations of demands in the time zones are given below in figure.

#### FIGURE 4: DEMAND IN VARIOUS TIME ZONES

- The average maximum demand in the normal, Peak and off-peak period registered at SIMAT with respect to the contract demand is 45.28, 14.21 & 10.15% respectively.
  - ii. The high demand occurred mainly during the normal period which is the results of working pattern in the college.

# 4. POWER FACTOR ANALYSIS

The Power factor is the ratio of Active power (kW) and apparent power (kVA).  $PF = Active \, energykWh/Apparentenergy \, (kVAh)$ 

The power factor variations in past one year is given below in figure.



#### FIGURE 5: POWER FACTOR ANALYSIS

| Inference | i. | Average power factor during the past one year is found to be 0.91. |
|-----------|----|--------------------------------------------------------------------|
|           | ii | The average incentives received to the college in last 12 months   |

- ii. The average incentives received to the college in last 12 months for maintaining the power factor above 0.90 is Rs 2819.
- iii. The minimum power factor to maintain by the college is changed to
   0.95 from the July 2019 onwards, by the KSEBL, which resulted in
   loss of approximately Rs 3804 within six months.
- iv. For power factor improvement, the capacitors are placed at the main switch board across the transformers in the college.
- v. From the figure, we get the inference that even though the APFC panels are installed across the transformers, the net effectiveness is low, due to the damage in the capacitor panels.
- Suggestioni.By improving the PF to unity, the present power factor incentives willincrease by approximately Rs 4000/- annually from the present value.
  - ii. In order to improve the PF the all the capacitor panels should run in automatic mode after replacing the damaged ones.

# 5. TARIFF RATES ANALYSIS

The average monthly energy and demand charges for the period Jan 2019 to Dec 2019 is represented in Figure below.



**FIGURE 6: TARIFF RATE** 

# Inferencei.Average demand charges for the past one year was Rs 30,000/ per monthand energy charges were Rs 27,528.37/ per month.

- ii. The energy charges came about **46.63%** of the total bill.
- **iii.** The SIMAT tariff band is **POOR** considering the 54% spend for demand and other charges.
- **iv.** Optimising the contract demand with respect to the requirement will reduce the charges significantly.

#### 6. SPECIFIC ELECTRICITY CONSUMPTION

# I. SEC BASED ON AREA (KWH/M<sup>2</sup>)

The electricity consumption from Jan 2019 to Dec 2019 has taken for the benchmarking in the SIMAT in the regression analysis method. Here the comparison is done with electricity consumption and building area, which is in square meter.

The below table shows the specific electricity consumption of SIMAT.

| Month  | Unit Consumption | Area                  | Specific Electricity Consumption |
|--------|------------------|-----------------------|----------------------------------|
|        | kWh              | <b>M</b> <sup>2</sup> | kWh/ M <sup>2</sup>              |
| Jan-19 | 2882             | 14420                 | 0.199                            |
| Feb-19 | 5060             | 14420                 | 0.350                            |
| Mar-19 | 7886             | 14420                 | 0.546                            |
| Apr-19 | 5780             | 14420                 | 0.400                            |
| May-19 | 4622             | 14420                 | 0.320                            |
| Jun-19 | 3156             | 14420                 | 0.218                            |
| Jul-19 | 3786             | 14420                 | 0.262                            |
| Aug-19 | 4068             | 14420                 | 0.282                            |
| Sep-19 | 3830             | 14420                 | 0.265                            |
| Oct-19 | 4712             | 14420                 | 0.326                            |
| Nov-19 | 3504             | 14420                 | 0.242                            |
| Dec-19 | 2308             | 14420                 | 0.160                            |
| Total  | 51594            | 14420                 | 3.577                            |

 TABLE 6: SPECIFIC ELECTRICITY CONSUMPTION – kWh/m<sup>2</sup>



#### FIGURE 7: SPECIFIC ELECTRICITY CONSUMPTION (kWh/m<sup>2</sup>)

- As one can see, the electricity consumption varies in different months as per the seasonal variations.
- The cooling or ventilation loads in the college were in full load during the March to April months that shows in here as high specific electricity consumption.
- The annual specific electricity consumption with respect to the building area is 3.577 kWh/m<sup>2</sup>.

# **ELECTRICITY PERFORMANCE**

The objective of this section is to establish how the facility is performing in terms of electricity consumption.

#### A. SINGLE LINE DIAGRAM

This section gives the basic single line diagram of the SIMAT with transformer name and rating.



FIGURE 8: SINGLE LINE DIAGRAM

# **B. TRANSFORMER SECONDARY**

The secondary side of the transformer was logged using power quality analyser Krykard ALM 35 for 24 hours and data is given in following table. The measurement was done in 06<sup>th</sup> March 2020 to 07<sup>th</sup> March 2020 for a period of 24 hours. The measurement-averaging was 02 minutes interval. The main incomer includes all the loads which passes in to the college.



**FIGURE 9: TRANSFORMER** 

| Measurement values – 433 V side |       |              |              |         |  |  |  |  |  |
|---------------------------------|-------|--------------|--------------|---------|--|--|--|--|--|
| Actual Energy for 24 Hrs        | kWh   |              | 202.39       |         |  |  |  |  |  |
| Apparent Energy for 24 Hrs      | kVAh  |              | 286.22       |         |  |  |  |  |  |
| Power Factor                    |       | 0.7          | 70 (Leading) |         |  |  |  |  |  |
| Particulars                     | Units | Minimum      | Maximum      | Average |  |  |  |  |  |
| Active Power                    | kW    | -4.89        | 33.06        | 8.539   |  |  |  |  |  |
| Apparent Power                  | kVA   | 0.03         | 34.96        | 12.07   |  |  |  |  |  |
| Reactive Power                  | kVAr  | -5.04        | 11.25        | -0.099  |  |  |  |  |  |
| Voltage Line                    | Volts | 0.8          | 438.5        | 418.5   |  |  |  |  |  |
| Current                         | Amps  | 0            | 71.9         | 16.63   |  |  |  |  |  |
| THD V                           | %     | 0.5          | 2.2          | 1.20    |  |  |  |  |  |
| TDD A                           | %     | 12.7         | 54.3         | 30.4    |  |  |  |  |  |
| Voltage Imbalance               | %     | % 0 1.2 0.47 |              |         |  |  |  |  |  |
| Current Imbalance               | %     | 0.7          | 200          | 42      |  |  |  |  |  |

TABLE 7: MAIN INCOMER

# Inferencei.The maximum demand registered during the period of measurement is 34.96<br/>kVA, in 2 minutes' interval, and the corresponding PF was 0.70 leading that<br/>shows the importance of APFC panel.

- ii. The harmonic values are high in the current, due to the high electronic controlled loads such as LED lights in the system.
- iii. The voltage imbalance is minimum whereas current imbalance was high due to the imbalance of loads in the college.

# 1. ANALYSIS: VOLTAGE VARIATION



The Voltage profile at the LV side is plotted below in figure.

#### FIGURE 10: VOLTAGE PROFILE

#### Inference

i. The figure shows the supply voltage variation.

- ii. The maximum and minimum supply voltage were during the normal operational period, excluding the power failure, is 438.5 and 407.7 V respectively with an average line voltage of 418.5V.
- iii. The present voltage values are satisfactory for the working of college.

# 2. LOAD FACTOR

The load factor is the ratio of the energy consumed during a given period (in the audit period or in last 12 months) to the energy, which would have been consumed if maximum demand had been maintained throughout the period.

Load factor (%) =

Energy used during the period (kWh) × 100

Maximum demand (kW) × Time under consideration (hr)

Load factor calculated from the 24-hour logging at the 415 V side during the period of audit is given in table below:

| Date of logging | Total kWh | Max kW | Load factor at 24 hours<br>% |
|-----------------|-----------|--------|------------------------------|
| 06-03-2020      | 202.39    | 33.06  | 25.50                        |
|                 | CEODMED   |        |                              |

TABLE 8: LOAD FACTOR - TRANSFORMER

- i. The higher the load factor means higher utilisation efficiency of the electrical system.
- ii. The present load factor of the college is 25.5 % which is good considering the variation in loads as per the zone wise.
- iii. The present load factor is satisfactory comparing to other buildings or colleges.

# 3. ANALYSIS: POWER FACTOR VARIATIONS

# a) kW & PF vs Time:

The session carries the analysis of the power factor with respect to time of the day (TOD) for finding out how power factor is varying at different load condition. This will give an indication about healthiness of electrical distribution system and response of capacitor panel to the load

| Status               | Time     | PF     | kW    | kVA   | kVAr   | Remarks |  |  |
|----------------------|----------|--------|-------|-------|--------|---------|--|--|
| Minimum PF           | 08:38:00 | -0.427 | -4.87 | 11.38 | -26.42 | Leading |  |  |
| Maximum PF           | 09:52:00 | 0.971  | 32.98 | 33.95 | 37.37  | Lagging |  |  |
| TABLE 9: PF ANALYSIS |          |        |       |       |        |         |  |  |



kW and PF have been plotted against the time and are given below:

#### FIGURE 11: KW & PF VS TIME

- The graph shows kW variations with respect to the PF average.
- Here the PF found to be within the range of 0.80 to unity, except during the power failure as shown in the above figure.
- The PF improvement to unity will generate sufficient cost savings for the college.

#### 4. ANALYSIS: UNBALANCE

#### **Current Imbalance**

Any deviation in voltage or current waveform from perfect sinusoidal in terms of magnitude or phase shift is termed as unbalance. In ideal conditions, i.e., with only linear loads connected to the system. On distribution level, the load imperfections cause current unbalance

The imbalance is calculated in terms of maximum deviation of current in a phase from the mean of three phases. Allowed current unbalance limits is 10% as per ANSI-C84-1-1995B standards. Calculation of current unbalance is calculated as per EN50160 standards.



The current profile for the 24 hours logging period is plotted in the below graph.

#### FIGURE 12: CURRENT PROFILE

- The figure show that current imbalance was higher during the night period mainly due to the single-phase loads in the college.
- The registered maximum imbalance was 200, due to the non-registering of current in one phase, with an average value of 42%.

# **HARMONIC STUDY**

Harmonics study revolves around the use of non-linear loads that are connected to electric power systems including static power converters, arc discharge devices, saturated magnetic devices and to a lesser degree, rotating machines. Static power converters of electric power are the largest non-linear loads and are used in industry for a variety of purposes such as electro- chemical power supplies, adjustable speed drives, and uninterruptible power supplies. These devices are useful because they can convert ac to dc, dc to dc, dc to ac, and ac to ac. Non-linear loads change the sinusoidal (a succession of waves or curves) nature of the ac power current (and consequently the ac voltage drop) thereby resulting in the flow of harmonic currents in the ac power system that can cause interference with communication circuits and other types of equipment. Classification, effects and standards are given below:

|              | 1st<br>order | 2nd<br>order | 3rd order | 3rd order | 4th order | 5th order | 6th order |
|--------------|--------------|--------------|-----------|-----------|-----------|-----------|-----------|
| Frequency Hz | 50           | 100          | 150       | 200       | 250       | 300       | 350       |
| Sequence     | +            | -            | 0         | +         | -         | 0         | +         |

TABLE 10: HARMONICS CLASSIFICATION

| Effect on - Motor & generator                                                                                                                            | -Transformers                                                                               | - Cables                                                               | - Electronic<br>equipment                                                                            | - Metering           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------|
| Rotor heating, causes Reverse<br>rotating magnetic field, causes<br>pulsating torque output,<br>Mechanical oscillations,<br>increases Cogging & Crawling | Increase in copper<br>& stray losses,<br>increase in iron<br>losses, transformer<br>heating | Voltage<br>stress &<br>corona, I <sup>2</sup> R<br>losses<br>increases | Voltage notching,<br>Electromagnetic<br>interference,<br>Shifting of the<br>voltage zero<br>crossing | Erroneous<br>reading |

TABLE 11: EFFECTS OF HARMONICS (IEEE 519)

|                        | Maximum harmonic current distortion<br>in percent of I <sub>L</sub><br>Individual harmonic order (odd harmonics) <sup>a, b</sup> |                   |                   |                   |                   |      |  |  |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|------|--|--|--|--|
|                        |                                                                                                                                  |                   |                   |                   |                   |      |  |  |  |  |
| $I_{\rm SC}/I_{\rm L}$ | $3 \le h \le 11$                                                                                                                 | $11 \le h \le 17$ | $17 \le h \le 23$ | $23 \le h \le 35$ | $35 \le h \le 50$ | TDD  |  |  |  |  |
| $< 20^{\circ}$         | 4.0                                                                                                                              | 2.0               | 1.5               | 0.6               | 0.3               | 5.0  |  |  |  |  |
| 20 < 50                | 7.0                                                                                                                              | 3.5               | 2.5               | 1.0               | 0.5               | 8.0  |  |  |  |  |
| $50 \le 100$           | 10.0                                                                                                                             | 4.5               | 4,0               | 1.5               | 0.7               | 12.0 |  |  |  |  |
| 100 < 1000             | 12.0                                                                                                                             | 5.5               | 5.0               | 2.0               | 1.0               | 15.0 |  |  |  |  |
| >1000                  | 15.0                                                                                                                             | 7.0               | 6.0               | 2.5               | 1.4               | 20.0 |  |  |  |  |

\*Even harmonics are limited to 25% of the odd harmonic limits above.

<sup>b</sup>Current distortions that result in a dc offset, e.g., half-wave converters, are not allowed.

<sup>c</sup>All power generation equipment is limited to these values of current distortion, regardless of actual Isc/IL

where

Isc = maximum short-circuit current at PCC

 $I_L = \max (1 + 1)$  maximum demand load current (fundamental frequency component) at the PCC under normal load operating conditions

#### TABLE 12: CURRENT HARMONICS LIMIT (IEEE 519-2014)

| Voltage distortion limits        |                                 |                                      |  |  |  |  |  |  |
|----------------------------------|---------------------------------|--------------------------------------|--|--|--|--|--|--|
| Bus voltage at PCC               | Individual voltage distortion % | Total voltage harmonics distortion % |  |  |  |  |  |  |
| V <u>&lt; 01 k</u> V             | 5.0                             | 8.0                                  |  |  |  |  |  |  |
| 01 kV < V <u>&lt;</u> 69 kV      | 3.0                             | 5.0                                  |  |  |  |  |  |  |
| 69.001 kV < V <u>&lt;</u> 161 kV | 1.5                             | 2.5                                  |  |  |  |  |  |  |
| 161.001 kV and above             | 1.0                             | 1.5                                  |  |  |  |  |  |  |

TABLE 13: VOLTAGE HARMONICS LIMIT (IEEE 519-2014

# HARMONICS DATA SHEET

| Measurement Location: Main Incomer (11kV PCC)                                                                                   |           |           |         |                |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|---------|----------------|--|--|--|--|
| Total harmonic distortion as per CEA standard TDDi limit is 8% and THDv limit is 5% at 415V level as per Short circuit analysis |           |           |         |                |  |  |  |  |
|                                                                                                                                 |           |           |         |                |  |  |  |  |
| Total Harmonic Distort                                                                                                          | ion - TDD | Voltage % | Current | Remarks        |  |  |  |  |
| %                                                                                                                               |           |           | %       |                |  |  |  |  |
|                                                                                                                                 |           | 2.2       | 36.11   | Over the limit |  |  |  |  |

#### **Individual Harmonic%**

| Particulars | 3rd  | 5th   | 7th  | 9th  | 11th | 13th | 15th |
|-------------|------|-------|------|------|------|------|------|
| Voltage %   | 0.4  | 1.5   | 0.7  | 0.5  | 0.4  | 0.4  | 0    |
| Current %   | 7.83 | 21.06 | 9.61 | 2.62 | 4.41 | 10.9 | 1.37 |
|             |      |       |      |      |      |      |      |

**TABLE 14: HARMONICS ANALYSIS** 



#### FIGURE 13: HARMONICS ANALYSIS

| Inference   | i.  | The figure in last page shows that the individual current harmonics are higher |
|-------------|-----|--------------------------------------------------------------------------------|
|             |     | in all the order of upto 15 except 9 and 15, whereas the individual voltage    |
|             |     | harmonics are within the limit.                                                |
|             | ii. | Also the current total harmonics distortion is higher than within the limit.   |
| I           |     |                                                                                |
| Suggestions | i.  | While purchasing nonlinear controlling devices such as VFD, UPS and loads      |
|             |     | such as LED, DC fans, more care should take to ensure the output harmonics     |
|             |     | values and specification should contain the IEEE/CEA standard limit which      |
|             |     | mentioned in the above table.                                                  |
|             | ii. | This will reduce the overall effect of harmonics in the equipment and supply   |

ii. This will reduce the overall effect of harmonics in the equipment and s system.

# C. CAPACITOR PANEL

To reduce reactive power consumption from the grid, partial kVAr must be supplied by capacitors which in turn will reduce demand from the utility supply system. The capacitor acts as a energy storage device. The power factor correction can be done at the Main switch board or at the load end.

In the main board SIMAT provided automatic controlled capacitors to each transformer low voltage side to increase the power factor of the system. The rated details and effectiveness of each capacitors under the transformer is analysed in this section and given in the following tables.

# 1. HT YARD TRANSFORMER

The HT yard transformer contains 45 kVAr APFC panel in which 40 kVAr is automatically controlled whereas 5 kVAr is placed as inline. The effectiveness of each capacitors is given in the table below.

| No         | kVAr<br>Rating | Desig<br>n<br>Volta<br>ge (V) | Measur<br>ed<br>Voltage<br>(V) | Measur<br>ed<br>Active<br>Power<br>(W) | Measur<br>ed<br>Reactiv<br>e Power<br>(kVAr) | Reactive<br>power<br>w.r.t.<br>measured<br>voltage<br>(kVAr) | % of<br>deteriorati<br>on | W/kVA<br>r |
|------------|----------------|-------------------------------|--------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------------------------------|---------------------------|------------|
|            | A              | В                             | С                              | D                                      | Е                                            | F= E*<br>(B/C) <sup>2</sup>                                  | G= (A-F)*<br>(100/A)      | H=D/E      |
| <b>C1</b>  | 10             | 440                           | 420                            | 0                                      | 0                                            | 0.00                                                         | 100.00                    | #DIV/0!    |
| C2         | 10             | 440                           | 419                            | 0                                      | 0                                            | 0.00                                                         | 100.00                    | #DIV/0!    |
| <b>C</b> 3 | 10             | 440                           | 418                            | 5                                      | 8.7                                          | 9.64                                                         | 3.60                      | 1          |
| <b>C4</b>  | 10             | 440                           | 415                            | 9                                      | 8.2                                          | 9.22                                                         | 7.82                      | 1          |
| C5         | 5              | 440                           | 420                            | 0                                      | 0                                            | 0.00                                                         | 100.00                    | #DIV/0!    |

**Table 15: Capacitor details** 

- Suggestion
   Replace the damaged capacitors (C1, C2 and C5) in the panel which will improve the PF in the system.
  - Among the rest, C1 is damaged as one phase showed short circuit.
  - By correcting the above issues with the capacitor panel PF will improve for the HT yard transformer.

# E. DIESEL GENERATORS

SIMAT uses total of 01 Diesel generator which gives the backup supply to the whole college. The diesel generated units in the SIMAT is comparatively high due to the general supply feeder failure from the KSEBL. The name plate details of DG installed in the college is given in the table below.

| Sl.No: | Rated kVA | Supplied to<br>transformer | Make     |
|--------|-----------|----------------------------|----------|
| 1      | 125       | MSB                        | Powerica |
|        |           |                            |          |

 TABLE 16: DG DETAILS

# HISTORIC SPECIFIC ENERGY GENERATION RATIO OF DG

Diesel generator are analysed for its efficacy or Specific Energy Generation Ratio (SEGR). The ratio of units generated per litre consumption of diesel gives you the SEGR. The SEGR of DG were analysed during the period of Jan -2019 to Dec 2019 for the cost per unit analysis and to compare with the present actual SEGR, that measured during the period of study.

The following table gives the diesel consumption, generated units and SEGR of each DG for the 12 month period.

| DG no                        | G1    |
|------------------------------|-------|
| Diesel consumption (Litres)  | 2262  |
| Diesel Generation (kWh)      | 6200  |
| SEGR (kWh/litre)             | 2.74  |
| Unit cost Rs/kWh             | 25.54 |
| TADLE 17 HIGTORIC CECE OF DC |       |

TABLE 17: HISTORIC SEGR OF DG

**Inference** i. The SEGR of DG is satisfactory as per the given data from the SIMAT.



Energy audit report – SIMAT



FIGURE 14: DIESEL GENERATOR

# F. HEATING VENTILATION & AIR CONDITIONING (HVAC)

HVAC stands for **Heating Ventilation and Air-Conditioning**. This is the major share of energy consumption and hence it is very critical to monitor and improve the system for energy economy. HVAC can be a synergistic integration of components that perform effective temperature control, humidity control, freshness and purity control of air for comfort air conditioning in a facility. In this section the HVAC systems are analyzed for identifying their behavior towards energy consumption (that is performance). We can only infer the improvements based on the performance analysis and system requirements.

# 1. AIR CONDITIONING

SIMAT is equipped with the Split Air conditioning systems for comfort air conditioning in various locations of building. The total cooling load is considered from the rated cooling capacity of air conditioning machines. The following table shows the rated details of air conditioners in various locations.

| Sl<br>no | Location                             | Туре  | Make      | Tonnage | Star<br>rating | EER  | Input power<br>(W) | MFD  | Quantity<br>(nos) |
|----------|--------------------------------------|-------|-----------|---------|----------------|------|--------------------|------|-------------------|
|          |                                      |       |           |         |                |      |                    |      |                   |
| 1        | Seminar hall                         | Split | Whirlpool | 1.5     | 2              | 2.63 | 1920               | 2010 | 3                 |
| 2        | Seminar hall                         | Split | Voltas    | 1.5     | 5              | 3.11 | 1656               | 2010 | 2                 |
| 3        | Civil cad lab                        | Split | Whirlpool | 1.5     | 2              | 2.63 | 1920               | 2010 | 4                 |
| 4        | CS computer<br>lab                   | Split | Whirlpool | 1.5     | 2              | 2.63 | 1920               | 2010 | 4                 |
| 5        | CS lab<br>programming                | Split | Voltas    | 1.5     | 5              | 3.11 | 1656               | 2010 | 2                 |
| 6        | CS lab<br>programming                | Split | Voltas    | 1.5     | 2              | 2.55 | 1800               | 2010 | 2                 |
| 7        | Advanced<br>electrical<br>eng/sw lab | Split | Whirlpool | 1.5     | 2              | 2.63 | 1920               | 2010 | 3                 |
| 8        | EC software<br>lab                   | Split | Whirlpool | 1.5     | 2              | 2.63 | 1920               | 2010 | 4                 |
|          | Total AC<br>load                     |       |           |         |                |      | 44.78 kW           |      |                   |

TABLE 18: SPLIT AC LOAD SUMMARY

Inference

• Most of the split ACs are old (2010 model) and has low EER value

• Arresting Infiltrated air entry or exit into a conditioned from the surroundings is very stringent to reduce the energy consumption.

- Athul Energy Consultants Pvt Ltd
  - Set temperature of AC in the location such as Civil CADD lab is 18°C which is an example of inefficient operation.

#### Suggestions

- Replace the old type Air conditioners immediately with BEE 5 star rated ACs especially in the labs for improved performance in the HVAC system.
  - The set temperature of all AC should not be less than 24 °C at any point of time.
  - Infiltrated Air entry to the conditioned space should be arrested immediately to reduce the energy bills.
  - Switch off the computer screens when not in use, which will reduce the heating load in the lab and thus the air conditioner load too.

# H. LIGHT, FAN & COMPUTER LOADS

Effective lighting is essential for building area to carry out their work properly, yet it is possible to achieve significant savings in this area and improve the quality of the lit environment. Good lighting design can reduce costs and have the added benefit of decreasing internal heat gains. The savings options is based on the working hours as by replacing the lights that are having higher number of working hours, will generate sufficient energy savings within a short period. The ceiling fan is one of the most commonly used ventilation equipment used in the SIMAT in most of the common open areas. The ceiling fans can also segregate as per the number of working hours.

a) Continuous lit or fan area are the following ones:

- 1. Staff rooms
- 2. Class rooms

b) Frequently lit or fan areas are the following ones:

- 1. Corridors
- 2. Labs
- 3. Workshops

#### A. Light loads

| Floor           | Location                               | Equipment     | Watts | Count | Total Watt |
|-----------------|----------------------------------------|---------------|-------|-------|------------|
| Third<br>Floor  | Drawing Hall                           | T8 tube light | 36    | 10    | 360        |
|                 | Drawing Hall                           | T8 tube light | 36    | 11    | 396        |
|                 | MT-3                                   | T8 tube light | 36    | 9     | 324        |
|                 | Drawing Hall                           | T8 tube light | 36    | 11    | 396        |
|                 | Floor                                  | T8 tube light | 36    | 6     | 216        |
| Second<br>Floor | ECE Software Lab                       | T8 tube light | 36    | 10    | 360        |
|                 | Communication Lab                      | T8 tube light | 36    | 7     | 252        |
|                 | Digital Electronics<br>Lab             | T8 tube light | 36    | 5     | 180        |
| Second<br>Floor | Electronic Circuits<br>Lab             | T8 tube light | 36    | 8     | 288        |
|                 | Advanced Electrical<br>Engineering Lab | T8 tube light | 36    | 10    | 360        |
|                 | Readers Club                           | T8 tube light | 36    | 4     | 144        |
|                 | ECE Faculty Room                       | T8 tube light | 36    | 3     | 108        |
|                 | AS&H Faculty Room                      | T8 tube light | 36    | 11    | 396        |

Athul Energy Consultants Pvt Ltd

| Floor              | Location         | Equipment     | Watts | Count | Total Watt |
|--------------------|------------------|---------------|-------|-------|------------|
|                    | AS&H HOD Room    | T8 tube light | 36    | 3     | 108        |
|                    | S12 ECE          | T8 tube light | 36    | 6     | 216        |
|                    | S12 ME II        | T8 tube light | 36    | 6     | 216        |
|                    | S12 CSE          | T8 tube light | 36    | 6     | 216        |
|                    | S12 EEE          | T8 tube light | 36    | 6     | 216        |
|                    | S12 ME I         | T8 tube light | 36    | 5     | 180        |
|                    | S12 CE           | T8 tube light | 36    | 8     | 288        |
| Second<br>Floor    | S6 CSE           | T8 tube light | 36    | 7     | 252        |
|                    | S4 CSE           | T8 tube light | 36    | 5     | 180        |
|                    | S8 CSE           | T8 tube light | 36    | 5     | 180        |
| Second<br>Floor    | EEE Faculty Room | T8 tube light | 36    | 4     | 144        |
|                    | CSE Faculty Room | T8 tube light | 36    | 3     | 108        |
|                    | CSE HOD Room     | T8 tube light | 36    | 3     | 108        |
| Second<br>Floor    | Toilets          | T8 tube light | 36    | 5     | 180        |
|                    | Floor            | T8 tube light | 36    | 25    | 900        |
| First<br>Floor     | Computer Centre  | T8 tube light | 36    | 1     | 36         |
| <b>First Floor</b> | Computer Centre  | T8 tube light | 36    | 1     | 36         |
| First Floor        | MF 4             | T8 tube light | 36    | 6     | 216        |
|                    | MF 26            | T8 tube light | 36    | 4     | 144        |
|                    | Staff Toilets    | T8 tube light | 36    | 2     | 72         |
|                    | Varandha         | T8 tube light | 36    | 24    | 864        |
|                    | EC Bath Room     | T8 tube light | 36    | 3     | 108        |
| First Floor        | MF 4             | T8 tube light | 36    | 6     | 216        |
|                    | MF 26            | T8 tube light | 36    | 4     | 144        |
|                    | Staff Toilets    | T8 tube light | 36    | 2     | 72         |
|                    | Varandha         | T8 tube light | 36    | 24    | 864        |
|                    | EC Bath Room     | T8 tube light | 36    | 3     | 108        |
| Ground<br>Floor    |                  | T8 tube light | 36    | 3     | 108        |
|                    | MG 18            | T8 tube light | 36    | 3     | 108        |
|                    | MG 19            | T8 tube light | 36    | 5     | 180        |
|                    | MG 20            | T8 tube light | 36    | 7     | 252        |
|                    | MG 21            | T8 tube light | 36    | 2     | 72         |
|                    | MG 23            | T8 tube light | 36    | 8     | 288        |
|                    | MG 14            | T8 tube light | 36    | 10    | 360        |

Athul Energy Consultants Pvt Ltd

| Floor       | Location          | Equipment     | Watts | Count | Total Watt |
|-------------|-------------------|---------------|-------|-------|------------|
|             | SAC               | T8 tube light | 36    | 2     | 72         |
|             | M Tech Class Room | T8 tube light | 36    | 4     | 144        |
|             | MG 09             | T8 tube light | 36    | 2     | 72         |
|             | S8 CE             | T8 tube light | 36    | 6     | 216        |
|             | S6 CE             | T8 tube light | 36    | 7     | 252        |
|             | S4 CE             | T8 tube light | 36    | 7     | 252        |
| First Floor | EEE Faculty Room  | T8 tube light | 36    | 2     | 72         |
|             | EEE HOD Room      | T8 tube light | 36    | 2     | 72         |
|             | S8 EEE            | T8 tube light | 36    | 6     | 216        |
|             | S6 EEE            | T8 tube light | 36    | 7     | 252        |
|             | S8 ECE            | T8 tube light | 36    | 7     | 252        |
|             | S6 ME             | T8 tube light | 36    | 7     | 252        |
|             | ECE Faculty Room  | T8 tube light | 36    | 2     | 72         |
| First Floor | MF 6              | T8 tube light | 36    | 2     | 72         |
|             | ECE HOD Room      | T8 tube light | 36    | 2     | 72         |
|             | S4 ECE            | T8 tube light | 36    | 6     | 216        |
|             | S6 ECE            | T8 tube light | 36    | 6     | 216        |
|             | MF 21             | T8 tube light | 36    | 1     | 36         |
|             | MF 22             | T8 tube light | 36    | 4     | 144        |
|             | Total sum (kW)    |               |       |       | 14.47      |

# Table 19: Light loads

|             | i.  | Majority of the indoor lighting fixtures are fluorescent type of 36W (T8)                                                    |
|-------------|-----|------------------------------------------------------------------------------------------------------------------------------|
| Inference   |     | that shares about 95% of the total indoor lighting load whereas 5% light                                                     |
|             |     | loads are CFL.                                                                                                               |
|             | ii. | The college has started to replace it with LED lights in time bound                                                          |
|             |     | manner whenever any replacement occurs.                                                                                      |
|             |     |                                                                                                                              |
| Suggestions | i.  | Replace the Fluorescent lights with energy efficient LED fittings for reducing the total energy consumption in the facility. |

# **B. Fan loads**

| Floor        | Location                               | Equipment | Watts | No. | Total Watt |
|--------------|----------------------------------------|-----------|-------|-----|------------|
| Third Floor  | MT-2                                   | Fan       | 60    | 9   | 540        |
| Third Floor  | MT-3                                   | Wall Fan  | 60    | 5   | 300        |
| Third Floor  | MT-4                                   | Fan       | 60    | 8   | 480        |
| Third Floor  | ECE Software Lab                       | Fan       | 60    | 5   | 300        |
| Second Floor | Communication Lab                      | Fan       | 60    | 10  | 600        |
| Second Floor | Digital Electronics<br>Lab             | Fan       | 60    | 6   | 360        |
| Second Floor | Electronic Circuits<br>Lab             | Fan       | 60    | 6   | 360        |
| Second Floor | Advanced Electrical<br>Engineering Lab | Fan       | 60    | 6   | 360        |
| Second Floor | Readers Club                           | Fan       | 60    | 7   | 420        |
| Second Floor | ECE Faculty Room                       | Fan       | 60    | 2   | 120        |
| Second Floor | AS&H Faculty Room                      | Fan       | 60    | 2   | 120        |
| Second Floor | AS&H HOD Room                          | Fan       | 60    | 5   | 300        |
| Second Floor | S12 ECE                                | Fan       | 60    | 2   | 120        |
| Second Floor | S12 ME II                              | Fan       | 60    | 6   | 360        |
| Second Floor | S12 CSE                                | Fan       | 60    | 6   | 360        |
| Second Floor | S12 EEE                                | Fan       | 60    | 6   | 360        |
| Second Floor | S12 ME I                               | Fan       | 60    | 4   | 240        |
| Second Floor | S12 CE                                 | Fan       | 60    | 6   | 360        |
| Second Floor | S6 CSE                                 | Fan       | 60    | 6   | 360        |
| Second Floor | S4 CSE                                 | Fan       | 60    | 6   | 360        |
| Second Floor | S8 CSE                                 | Fan       | 60    | 6   | 360        |
| Second Floor | EEE Faculty Room                       | Fan       | 60    | 6   | 360        |
| Second Floor | CSE Faculty Room                       | Fan       | 60    | 2   | 120        |
| Second Floor | CSE HOD Room                           | Fan       | 60    | 2   | 120        |
| Second Floor | CSE HOD Room                           | Fan       | 60    | 2   | 120        |
| Second Floor | Computer Centre                        | Table Fan | 60    | 1   | 60         |
| First Floor  | Compiler Lab                           | Table Fan | 60    | 1   | 60         |
| First Floor  | CAD Lab                                | Table Fan | 60    | 1   | 60         |
| First Floor  | Computer Centre                        | Table Fan | 60    | 1   | 60         |
| First Floor  | Compiler Lab                           | Table Fan | 60    | 1   | 60         |
| First Floor  | CAD Lab                                | Table Fan | 60    | 1   | 60         |
| First Floor  | MF 4                                   | Table Fan | 60    | 1   | 60         |
| First Floor  | MF4                                    | Fan       | 60    | 6   | 360        |

| First Floor         | MG 17A CE Staff   | Fan       | 60    | 6   | 360        |
|---------------------|-------------------|-----------|-------|-----|------------|
|                     | Room              |           |       |     |            |
| <b>Ground Floor</b> |                   | Fan       | 60    | 2   | 120        |
| <b>Ground Floor</b> | MG 19             | Fan       | 60    | 6   | 360        |
| Floor               | Location          | Equipment | Watts | No. | Total Watt |
| <b>Ground Floor</b> | MG 20             | Fan       | 60    | 6   | 360        |
| <b>Ground Floor</b> | MG 21             | Fan       | 60    | 6   | 360        |
| <b>Ground Floor</b> | MG 23             | Fan       | 60    | 2   | 120        |
| <b>Ground Floor</b> | OFFICE            | Fan       | 60    | 5   | 300        |
| <b>Ground Floor</b> | OFFICE            | Fan       | 60    | 10  | 600        |
| <b>Ground Floor</b> | OFFICE            | Exhaust   | 60    | 2   | 120        |
| Ground Floor        | MG-16             | Wall Fan  | 60    | 4   | 240        |
| Ground Floor        | M Tech Class Room | Fan       | 60    | 1   | 60         |
| <b>Ground Floor</b> | MG 09             | Fan       | 60    | 2   | 120        |
| <b>Ground Floor</b> | S8 CE             | Fan       | 60    | 6   | 360        |
| <b>Ground Floor</b> | S6 CE             | Fan       | 60    | 4   | 240        |
| <b>Ground Floor</b> | S4 CE             | Fan       | 60    | 5   | 300        |
| <b>Ground Floor</b> | EEE Faculty Room  | Fan       | 60    | 5   | 300        |
| First Floor         | EEE HOD Room      | Fan       | 60    | 2   | 120        |
| First Floor         | S8 EEE            | Fan       | 60    | 1   | 60         |
| First Floor         | S6 EEE            | Fan       | 60    | 6   | 360        |
| First Floor         | S8 ECE            | Fan       | 60    | 4   | 240        |
| First Floor         | S6 ME             | Fan       | 60    | 6   | 360        |
| First Floor         | ECE Faculty Room  | Fan       | 60    | 6   | 360        |
| First Floor         | MF 6              | Fan       | 60    | 2   | 120        |
| First Floor         | ECE HOD Room      | Fan       | 60    | 2   | 120        |
| First Floor         | S4 ECE            | Fan       | 60    | 2   | 120        |
| First Floor         | S6 ECE            | Fan       | 60    | 6   | 360        |
| First Floor         | MF 21             | Fan       | 60    | 6   | 360        |
| First Floor         | MF 21             | Fan       | 60    | 1   | 60         |
| First Floor         | MF 22             | Wall Fan  | 60    | 1   | 60         |
|                     | Total power (kW)  |           |       |     | 15.66      |

Table 20: Fan loads

| Inference  | i.  | In total fan loads the ceiling fan shares the most loads with $90\%$ of the    |
|------------|-----|--------------------------------------------------------------------------------|
|            |     | total load.                                                                    |
|            | ii. | The approximate total connected fan load in the college is $15.66~\mathrm{kW}$ |
|            | I   |                                                                                |
| Suggestion | i.  | The continuous working ceiling fans can be replacing with Brushless DC         |
|            |     | fans which will consume only around 20 to 25W max per fan.                     |
|            | ii. | This will reduce the overall power consumption of the college.                 |
|            | l   |                                                                                |

# **C.** Computer loads

| Floor        | Location                 | Equipment | Watts | Nos | Total watts |
|--------------|--------------------------|-----------|-------|-----|-------------|
| Second Floor | ECE Software Lab         | Computer  | 150   | 34  | 5100        |
| Second Floor | ECE Software Lab         | Printer   | 350   | 1   | 350         |
| Second Floor | <b>Communication Lab</b> | Computer  | 150   | 1   | 150         |
| Second Floor | Digital Electronics      | Computer  | 150   | 1   | 150         |
|              | Lab                      |           |       |     |             |
| Second Floor | Electronic Circuits      | Computer  | 150   | 1   | 150         |
|              | Lab                      |           |       |     |             |
| Second Floor | Advanced Electrical      | Computer  | 150   | 24  | 3600        |
|              | Engineering Lab          |           |       |     |             |
| Second Floor | ECE Faculty Room         | Computer  | 150   | 1   | 150         |
| Second Floor | AS&H Faculty Room        | Computer  | 150   | 1   | 150         |
| Second Floor | AS&H Faculty Room        | Printer   | 350   | 1   | 350         |
| Second Floor | AS&H HOD Room            | Computer  | 150   | 1   | 150         |
| Second Floor | EEE Faculty Room         | Computer  | 150   | 1   | 150         |
| Second Floor | EEE Faculty Room         | Printer   | 350   | 1   | 350         |
| Second Floor | CSE Faculty Room         | Computer  | 150   | 1   | 150         |
| Second Floor | CSE Faculty Room         | Printer   | 350   | 1   | 350         |
| Second Floor | CSE HOD Room             | Computer  | 150   | 1   | 150         |
| Second Floor | CSE HOD Room             | Printer   | 350   | 1   | 350         |
| First Floor  | Computer Centre          | Computer  | 150   | 40  | 6000        |
| First Floor  | Programming Lab          | Computer  | 150   | 38  | 5700        |
| First Floor  | Compiler Lab             | Computer  | 150   | 38  | 5700        |
| First Floor  | CAD Lab                  | Computer  | 150   | 44  | 6600        |
| First Floor  | Computer Centre          | Computer  | 150   | 40  | 6000        |
| First Floor  | Programming Lab          | Computer  | 150   | 38  | 5700        |
| First Floor  | Compiler Lab             | Computer  | 150   | 38  | 5700        |
| First Floor  | CAD Lab                  | Computer  | 150   | 44  | 6600        |
| Ground Floor | OFFICE                   | Computer  | 150   | 8   | 1200        |
| Ground Floor | Conference Hall          | Projector | 250   | 1   | 250         |
| First Floor  | EEE Faculty Room         | Computer  | 150   | 1   | 150         |
| First Floor  | EEE Faculty Room         | Printer   | 350   | 1   | 350         |
| First Floor  | EEE HOD Room             | Computer  | 150   | 1   | 150         |
| First Floor  | EEE HOD Room             | Printer   | 350   | 1   | 350         |
| First Floor  | ECE Faculty Room         | Computer  | 150   | 1   | 150         |
| First Floor  | MF 6                     | Computer  | 150   | 1   | 150         |
| First Floor  | ECE HOD Room             | Computer  | 150   | 1   | 150         |
| First Floor  | ECE HOD Room             | Printer   | 350   | 1   | 350         |
| First Floor  | MF 21                    | Computer  | 150   | 1   | 150         |
| First Floor  | MF 22                    | Computer  | 150   | 1   | 150         |
|              | Total power (kW)         |           |       |     | 63.35       |

Table 21: Computer loads

Suggestion

i. The computer screen should switch off after use as it will consume to around 10W in idle condition (eg. Civil CADD lab).

# RENEWABLE ENERGY

**Solar plant:** College installed 30 kW solar power plant in its facility showing their dedication to sustainability and environmental protection.



# **ANNEXURE-1**

# **ENERGY SAVING PROPOSAL - 1**

#### PF IMPROVEMENT IN ELECTRICAL SYSTEM

#### Background

By referring the KSEB bills and 24-hour logging of the college indicates the power factor is maintained in the level of 0.85 to 0.95 instead of unity and found lagging. The capacitors that installed at the transformer secondary side were found damaged.

#### Proposal

Replace the damaged capacitors in the transformer secondary.

By increasing the Power factor to unity as per the mentioned method the SIMAT will have an increase in the PF incentives

The table below gives the investment cost for capacitor replacement, annual incentives by the PF improvement and the payback period.

| Based on last 12 Months  |        |           |  |  |  |  |
|--------------------------|--------|-----------|--|--|--|--|
| Particulars              | Unit   | Values    |  |  |  |  |
| Present PF               |        | 0.93      |  |  |  |  |
| Avg Energy Charges/Month | Rs     | 27,528.00 |  |  |  |  |
| Present Incentive        | Rs     | 0.00      |  |  |  |  |
| Proposed PF              |        | 1         |  |  |  |  |
| Avg Incentives/Month     | Rs     | 1376.41   |  |  |  |  |
| Avg Incentives/Year      | Rs     | 16,517.00 |  |  |  |  |
| Investment cost          | Rs     | 6000.00   |  |  |  |  |
| Payback period           | Months | 05        |  |  |  |  |

# REPLACEMENT OF CEILING FANS IN THE STAFF ROOMS AND CLASS ROOMS WITH ENERGY EFFICIENT BLDC FANS

#### Background

A BLDC fan takes in AC voltage and internally converts it into DC using SMPS. The main difference between BLDC and ordinary DC fans is the commutation method. A commutation is basically the technique of changing the direction of current in the motor for the rotational movement. In a BLDC motor, as there are no brushes, so the commutation is done by the driving algorithm in the Electronics. The 1200 mm size BLDC fan at dull speed consumes only around 22 to 27W instead of the present ceiling fan with induction motors that takes 60 to 70W as per the manufactures.

#### Proposal

Replace the ceiling fans with BLDC in the staff rooms and class rooms. The locations are selected based on the average working hours of more than 8. The salvage value of Rs 600/ fan while replacement is estimated for calculation.

| Particulars                                  | Unit   | With BLDC   |
|----------------------------------------------|--------|-------------|
| Power of existing ceiling fans at full speed | Watts  | 60          |
| Power of replacing fan                       | Watts  | 25          |
| Difference in Wattage                        | Watts  | 35          |
| Avg No: of working hours/day                 | Hrs    | 8           |
| No: of working days per year (Average)       | Nos    | 200         |
| No: of working hours per annum               | Hrs    | 1600        |
| Number of Ceiling Fans operating             | Nos    | 62          |
| kWh Saving per Annum                         | kWh    | 3472        |
| Cost per kWH (Average)                       | Rs     | 6.4         |
| Annual Financial Savings                     | Rs     | 22220.80    |
| Cost of replacing Fan per piece              | Rs     | 2,500.00    |
| Investment for replacing Fan                 | Rs     | 1,55,000.00 |
| Salvage value per fan                        | Rs     | 600.00      |
| Total salvage value                          | Rs     | 37,200.00   |
| Net investment for replacing fan             | Rs     | 1,17,800.00 |
| Simple Payback period                        | Months | 31          |

The calculation for the savings is given in the table below.

# REPLACEMENT OF FLUORESCENT TUBES WITH LED IN SELECTED LOCATIONS Background

The present indoor light fitting are mostly dominated by fluorescent tubes (T8) which consumes 36 to 40 W. This tube light having the life expectancy less than the LED and higher than the incandescent lights. The present fluorescent tube fitting contains mercury and other toxic materials which is harmful to the human beings if it got burst off.

# Proposal

By replacing the indoor T8 light fittings with LED's of appropriate ratings the power consumption will reduce considerably by approximate 50% with the present operating hours. The immediate replacement is suggesting at locations where the T8 runs more than 12 hours/day.

The auditors are suggesting to replace the fluorescent lights with the LED of 18 to 20W wherever the light gets damaged.

| Power of Fluorescent lights            | Watts  | 36          |
|----------------------------------------|--------|-------------|
| Proposed LED tube                      | Watts  | 18          |
| Difference in Wattage                  | Watts  | 18          |
| Avg No: of working hours/tube/day      | Hrs    | 5           |
| No: of working days per year (Average) | Nos    | 350         |
| No: of working hours per annum         | Hrs    | 1750        |
| Number of Lights operating             | Nos    | 402         |
| kWh Saving per Annum                   | Rs     | 12,663.00   |
| Cost per kWH (Average)                 | Rs     | 9.1         |
| Annual Financial Savings               | Rs     | 1,15,233.30 |
| Cost of LED tube                       | Rs     | 300         |
| Investment for LED lights              | Rs     | 1,20,600    |
| Simple Payback period                  | Months | 13          |

# **ANNEXURE-2**

# 1. LED specification

The Department of Electronics and information technology issued "Electronics and information Technology goods order 2012" on 3<sup>rd</sup> October 2012 the following standards for LED lamps are covered.

- 1. IS 15885 (Part -2/section 13)
- 2. IS 16102 (Part-1): 2012

As per this order LED manufactures to get their product tested from BIS recognised labs.

Thus, the following electrical parameters and standards should ensure while purchasing LED in future based on the BIS standards. These are the minimum technical requirements for the acceptance of LED. Also, the LED test certificates as per the various standards mentioned below should be examined while purchasing.

| Sl no | Parameters            | Requirements       | Applicable IS   |
|-------|-----------------------|--------------------|-----------------|
| 1     | Light source          | SMD LED chip       | LM 80/IS 16106  |
| 2     | System Efficacy       | >= 110 lumen /watt | IS 16106:2012   |
| 3     | LED Driver Efficiency | Minimum 85%        |                 |
| 4     | Harmonics             | Maximum 10%        | IS 16102-2-2012 |
| 5     | Power factor          | Minimum 0.95       | IS 16102-2      |
| 6     | Frequency             | 50 Hz ±3%          | LM-79 report    |
| 7     | Operating voltage     | 110V - 320V        | LM 79 report    |
| 8     | Surge voltage         | >4 kV              | LM 79 report    |
| 9     | Ambient temp          | -10 to 50 deg C    | LM 79 report    |
| 10    | Degree of protection  | IP 66              | IS 10322        |
| 11    | CRI                   | Minimum 70         | IS 16102 - 2    |

TABLE 22: LED specification

# 2. BLDC SPECIFICATION

Normal trend of one ceiling fan working hours with present cost while replacing with BLDC fan and the payback period is given in below table.

| Number of<br>working<br>hours/day for a<br>single ceiling fan | Hour<br>s | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | More<br>than<br>20 |
|---------------------------------------------------------------|-----------|---|----|----|----|----|----|----|----|----|----|----|--------------------|
| Simple payback<br>period after<br>replacement<br>with BLDC    | Years     | 5 | 5  | 4  | 4  | 4  | 3  | 3  | 3  | 3  | 3  | 3  | 2                  |

The BLDC fan test certificates as per the various standards mentioned below should be examined while purchasing.

| Sl no | Parameters               | Requirements | Applicable IS |
|-------|--------------------------|--------------|---------------|
| 1     | Air delivery             | 215 CMM      | IS 374 - 2019 |
| 2     | Harmonics                | Maximum 10%  | IS 374 - 2019 |
| 3     | Power factor             | Minimum 0.95 | IS 374 - 2019 |
| 4     | Frequency                | 50 Hz ±3%    | IS 374 - 2019 |
| 5     | Insulation resistance    | >2 MΩ        | IS 374 - 2019 |
| 6     | Speed                    | 350 rpm      | IS 374 - 2019 |
| 7     | Maximum temperature rise | 70 deg C     | IS 374 - 2019 |
| 8     | Degree of protection     | IP 65        | IS 10322      |

**TABLE 23: BLDC SPECIFICATION** 

# 3. ABBREVIATIONS

| APFC   | : | Automatic Power Factor controller                     |
|--------|---|-------------------------------------------------------|
| AVG    | : | Average                                               |
| BDV    | : | Breakdown voltage                                     |
| BEE    | : | Bureau of energy efficiency                           |
| CEA    | : | Central electrical authority                          |
| CFL    | : | Compact fluorescent lamp                              |
| CFM    | : | Feet cube per minute                                  |
| DB     | : | Distribution Board                                    |
| DG Set | : | Diesel Generator Set                                  |
| EC     | : | Energy Conservation                                   |
| FD     | : | Forced draft                                          |
| HPSV   | : | High-pressure sodium vapour                           |
| HT     | : | High Tension                                          |
| ID     | : | Induced draft                                         |
| IEC    | : | International electro technical commission            |
| IEEE   | : | The Institute of electrical and electronics engineers |
| IS     | : | Indian Standard                                       |
| KG     | : | Kilogram                                              |
| KVA    | : | Kilo Volt Ampere                                      |
| KVAH   | : | Kilo volt Ampere Hour                                 |
| KVAR   | : | Kilo volt-ampere                                      |
| KW     | : | Kilo Watts                                            |
| KWH    | : | Kilowatt-hour                                         |
| LED    | : | Light emitting diode                                  |
| MAX    | : | Maximum                                               |
| MH     | : | Metal halide                                          |
| NEMA   | : | National Electrical Manufacturers Association         |
| OLTC   | : | On load tap changer                                   |
| ONAN   | : | Oil natural air natural                               |
| PCC    | : | Point of common coupling                              |
| PSI    | : | Pound square inch                                     |
| RMD    | : | Registered Maximum demand                             |
| SEC    | : | Specific electricity consumption                      |
| SFU    | : | Switch Fuse Unit                                      |
| SLD    | : | Single Line Diagram                                   |
| TDD    | : | Total demand distortion                               |
| THD    | : | Total harmonics distortion                            |
| TOE    | : | Tonne of oil equivalent                               |
| UPS    | : | Uninterruptible power supply                          |
| VFD    | : | Variable frequency drive                              |
|        |   |                                                       |

# 4. INSTRUMENTS USED

| 1         Power energy & harmonic Analyser         Krykard ALM 35 | SL.NO | EQUIPMENT DESCRIPTION            | MAKE & MODEL   |
|-------------------------------------------------------------------|-------|----------------------------------|----------------|
|                                                                   | 1     | Power energy & harmonic Analyser | Krykard ALM 35 |
| 2 Air quality analyser Testo 480                                  | 2     | Air quality analyser             | Testo 480      |

 TABLE 24: INSTRUMENTS USED

# 5. REFERENCES

- 1. NAAC Institutional accreditation manual 2019
- 2. BEE energy audit books
- 3. CEA regulations of grid connectivity-2007
- 4. IEEE Std. 519-1992.